Measure Concentration for Compound Poisson Distributions
نویسنده
چکیده
Abstract: We give a simple development of the concentration properties of compound Poisson measures on the nonnegative integers. A new modification of the Herbst argument is applied to an appropriate modified logarithmic-Sobolev inequality to derive new concentration bounds. When the measure of interest does not have finite exponential moments, these bounds exhibit optimal polynomial decay. Simple new proofs are also given for earlier results of Houdré (2002) and Wu (2000).
منابع مشابه
Entropy and the ‘compound’ Law of Small Numbers
An information-theoretic foundation for compound Poisson approximation limit theorems is presented, in analogy to the corresponding developments for the central limit theorem and for simple Poisson approximation. It is shown that the compound Poisson distributions satisfy a natural maximum entropy property within a natural class of distributions. Simple compound Poisson approximation bounds are...
متن کاملThe Distributions of Stopping Times For Ordinary And Compound Poisson Processes With Non-Linear Boundaries: Applications to Sequential Estimation
Distributions of the first-exit times from a region with non-linear upper boundary are discussed for ordinary and compound Poisson processes. Explicit formulae are developed for the case of ordinary Poisson processes. Recursive formulae are given for the compound Poisson case, where the jumps are positive, having continuous distributions with finite means. Applications to sequential point estim...
متن کاملOn Poisson–Tweedie mixtures
*Correspondence: [email protected] 1Department of Mathematics, Ohio University, Athens, OH, USA Full list of author information is available at the end of the article Abstract Poisson-Tweedie mixtures are the Poisson mixtures for which the mixing measure is generated by those members of the family of Tweedie distributions whose support is non-negative. This class of non-negative integer-valued ...
متن کاملProof of logconcavity of some compound Poisson and related distributions
Compound Poisson distributions play important role in many applications (telecommunication, hydrology, insurance, etc.). In this paper, we prove that some of the compound Poisson distributions have the logconcavity property that makes them applicable in stochastic programming problems. The proofs are based on classical Turan types theorem and orthogonal polynomials. Acknowledgements: Please ins...
متن کاملPromotion time models with time-changing exposure and heterogeneity: application to infectious diseases.
Promotion time models have been recently adapted to the context of infectious diseases to take into account discrete and multiple exposures. However, Poisson distribution of the number of pathogens transmitted at each exposure was a very strong assumption and did not allow for inter-individual heterogeneity. Bernoulli, the negative binomial, and the compound Poisson distributions were proposed ...
متن کامل